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Abstract: In this review, we summarize a remarkable series of developments in atomistic 

modeling that unfolded over just six weeks, from mid-May to the end of June 2025. This 

extraordinary sequence began on May 13, when Meta’s Fundamental AI Research team 

released the OMol25 dataset, a large-scale, high-accuracy quantum chemistry dataset, along 

with an accompanying paper on arXiv and the model on Hugging Face. On the same day, they 

also released universal models for atoms (UMA) on Hugging Face, with the related paper 

published on arXiv on June 30, 2025. Around the same period, the widely used package for 

atomistic calculations, ORCA, was updated to version 6.1 and officially released on June 17, 

introducing substantial methodological and performance improvements. In the area of 

semiempirical methods, the group of Prof. Grimme released a new and powerful method, g-

xTB, on June 24. As the successor to the GFN family, g-xTB is a general-purpose extended 

tight-binding method that offers significantly improved accuracy at a modest computational 

cost. These advances coincided with WATOC 2025, the triennial meeting of the theoretical 

and computational chemistry community, held in Oslo from June 22 to 27, with g-xTB 

presented in session on June 26. Taken together, these developments represent one of the 

most dynamic and impactful periods in the recent history of atomistic modeling. During this 

time, we also released a new version of our platform, Atomistica.online 2025, our 

contribution aimed at enhancing accessibility and usability in molecular modeling. 
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1. Introduction 

 Atomistic modeling plays a central role in modern chemistry and materials science. 

Methods such as, for example, density functional theory (DFT), molecular dynamics (MD) 
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simulations based on force fields, and others provide fundamental insights into molecular 

structure, reactivity, and dynamics across a broad range of scientific and technological 

applications [1–3]. These techniques are crucial for making advancements in areas such as 

drug discovery, catalysis, materials design, and energy storage [4–9]. 

Despite their importance and usefulness, high-accuracy atomistic methods, 

particularly those based on quantum mechanics, are often computationally very demanding. 

The cost of performing atomistic calculations on large molecular systems or exploring 

extensive conformational spaces can quickly become unavailable, therefore, even if one 

owns modern and expensive hardware, the system of interest cannot be studied. To address 

this challenge, several strategies have been developed. Several approaches exist, while one 

standard involves introducing additional layers of approximation, leading to the 

development of, for example, semiempirical methods. These approaches, such as the GFN 

family of methods [10–14], reduce computational cost by parameterizing quantum 

mechanical interactions, although a certain price is paid in terms of generality and accuracy. 

In recent years, the application of machine learning has gained increasing attention, 

aiming to complement, or even sometimes, replace or approximate quantum chemical 

calculations [15–17]. In this approach, mathematical models are trained to reproduce the 

results of expensive quantum mechanical methods, such as DFT, using large datasets of 

reference calculations. Once ML models are obtained, scientists can use them to predict 

molecular properties orders of magnitude faster than conventional quantum methods, while 

often retaining comparable accuracy within their domain of applicability. This approach 

denotes a shift from physics-based modeling to data-driven prediction. 

The success of the machine learning approach depends critically on the availability of 

high-quality datasets. Development of traditional software for atomistic calculations is also 

significant, as it enables researchers to perform calculations and thus generate datasets that 

can be cross-correlated with experimental data. Building and maintaining these codes is a 

challenge in every aspect, especially as new theoretical methods and parallel computing 

architectures emerge. ORCA [18–25], for example, a widely used code for performing a 

number of types of calculations, stands out as a notable example of sustained innovation and 

usability. 

Finally, scientific conferences continue to play a vital role in fostering collaboration, 

disseminating results, and setting new directions for the field. The triennial World 

Association of Theoretical and Computational Chemists (WATOC) congress [26] is one such 

event that enables connections between researchers from around the globe to exchange 

ideas, present new work, and shape the future of theoretical and computational chemistry. 

 Building upon the ongoing evolution of data-driven methods, software development, 

and community engagement outlined above, this review provides an overview of several 
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significant developments that unfolded in the short span of less than five weeks in 2025, 

from May 13 to June 27 (Figure 1).  

 

 

Figure 1. Timeline of key developments in atomistic modeling during six weeks in 2025 

 

During this brief window, the Meta’s Fundamental AI Research (FAIR) team [27] 

released OMol25 [28], the largest and most diverse dataset of DFT-calculated molecules to 

date, along with a Universal Models for Atoms (UMA) [29] trained on over 30 billion atoms. 

Simultaneously, the ORCA software suite advanced to version 6.1, bringing powerful new 

features and improved efficiency to a widely used code for performing various types of 

atomistic calculations. In the same period, Grimme’s group introduced g-xTB [30], a 

successor to the popular GFN family of semiempirical methods, pushing the limits of fast, 

accurate simulations even further. Concluding this dynamic period, the WATOC 2025 

congress in Oslo [31] gathered hundreds of researchers. We also briefly note our 

contribution to this vibrant ecosystem through updates to the Atomistica.online platform 

[32,33]. 

 

2. OMol25 and UMA: Advancing Molecular Modeling with Data and Models 

One may think of Meta as a technology company primarily known for its role in social 

networking and virtual platforms. However, in recent years, Meta has also become a 

significant factor in fundamental scientific research through its FAIR initiative. While FAIR 

has been recognized for contributions to language modeling and AI hardware, its parallel 

efforts in computational chemistry and materials science have grown steadily, now 

culminating in a series of releases in 2025 that position it as a major contributor to the field 

of atomistic modeling. 
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The release of OMol25 and UMA represents huge contributions. These resources 

address two important aspects in machine learning for molecular simulation: access to large, 

high-quality datasets and the availability of generalizable and high-accuracy ML potentials. 

OMol25 resulted from hundreds of millions of quantum mechanical calculations spanning a 

wide diversity of chemical space, while UMA offers a trained, ready-to-use potential 

applicable across molecules and materials. Importantly, both were made openly available to 

the community, setting a new standard for transparency, scale, and accessibility in the area 

of atomistic calculations. 

 

2.1. OMol25 Dataset: Scale, Quality, and Scope 

The OMol25 dataset is a dataset of unprecedented scale. It was developed after more 

than 100 million quantum-mechanical calculations, each computed using DFT at the ωB97M-

V/def2-TZVPD level of theory with a high-resolution 99590-point integration grid. In total, 

the dataset required over 6 billion core-hours of compute, making it one of the largest and 

most computationally demanding initiatives in the history of molecular simulation. 

OMol25 was designed to overcome key limitations of earlier molecular datasets, such 

as QM9 [34] or SPICE [35,36], which were constrained by relatively narrow chemical 

coverage, inconsistent theory levels, or small system sizes. By contrast, OMol25 includes: 

 83 elements, far beyond the typical C-H-O-N-based molecules in prior datasets. 

 System sizes up to 10× larger than in earlier efforts. 

 Consistent DFT-level accuracy across all entries, enabling clean and transferable 

machine learning model training. 

 

The dataset is structured around three core chemical domains: 

 Biomolecules, including protein-ligand and nucleic acid complexes, were sampled 

through docking, restrained MD, and tautomer enumeration. 

 Electrolytes, such as ILs, redox-active clusters, and solvent-gas interfaces, with 

structures extracted from MD trajectories and quantum cluster sampling. 

 Metal complexes were generated using the GFN2-xTB method combined with the 

AFIR protocol to explore reactive pathways and diverse spin states. 

 

Moreover, OMol25 includes recalculations of several existing datasets, such as ANI-

2X [37], SPICE [35,36], and Transition-1x [38], at the same level of theory, ensuring 

consistency and extending its relevance. This approach positions OMol25 not only as a 
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standalone resource but also as a unifying layer for previously fragmented datasets in the 

field. 

In terms of coverage and accuracy, OMol25 is widely seen as the molecular equivalent 

of what ImageNet [39–41] represented for computer vision: a large-scale, standardized 

dataset that catalyzes the development of general-purpose, high-performing models. It shifts 

the focus in the field from data acquisition to model innovation and fine-tuning, especially 

for academic and industrial groups who now have access to a shared high-quality training 

foundation. 

 

2.2. UMA Models: Toward General-Purpose Neural Potentials 

Accompanying the OMol25 dataset, Meta FAIR released a family of machine learning 

potentials known as UMA. These models are designed to provide general-purpose 

predictions of atomic interactions across a vast chemical space, bridging molecules and 

materials, and reflecting a new level of ambition in the development of neural network 

potentials (NNPs). 

The UMA models are trained not only on OMol25 but also on a broader family of FAIR 

datasets, including OC20 [42], ODAC23 [43], and OMat24 [44]. This multi-dataset training 

was made possible through a novel Mixture of Linear Experts (MoLE) architecture. Inspired 

by mixture-of-experts strategies in natural language processing, MoLE enables UMA to learn 

from chemically heterogeneous datasets without significant performance degradation or 

increased inference cost. 

In technical terms, UMA builds on Meta's earlier equivariant Smooth Energy Network 

(eSEN) framework [45], incorporating additional structure to support multi-domain 

generalization. The training process follows a two-stage strategy: first, a direct-force model 

is trained, followed by fine-tuning into a conservative-force model, which guarantees that 

the learned force field derives from a potential energy surface. This conservative fine-tuning 

not only improves physical ground but also enhances performance in tasks like MD, where 

energy conservation and smooth gradients are essential. 

UMA models are released in different sizes (small, medium, large), though only the 

small model is currently openly available. Despite its modest size, the UMA-small model 

achieves mean absolute errors (MAEs) below 1 kcal/mol on representative benchmark 

tasks. Notably, the model matches or exceeds the accuracy of established DFT methods 

across several tasks while being orders of magnitude faster. 

Perhaps most importantly, UMA is positioned as a general-purpose model, intended 

to serve as a pre-trained backbone for a wide range of downstream tasks. Much like large 
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language models are fine-tuned for translation or summarization, UMA can be fine-tuned for 

applications such as reactivity prediction, conformer generation, or solvation energy 

estimation. Its training scale and architectural design suggest a future where pre-trained 

atomistic models become a standard starting point in computational chemistry workflows. 

In summary, the UMA models mark a shift from task-specific potentials to foundation 

models for atomistic simulation. When paired with the OMol25 dataset, they enable new 

levels of speed and accuracy in modeling systems that were previously out of reach, 

including large biomolecular complexes and catalytically relevant metal systems. 

 

3. ORCA 6.1 

While machine learning-based approaches have garnered increasing attention, 

traditional software for atomistic calculations remains indispensable for high-accuracy 

modeling, method development, and benchmarking. Among the most widely used electronic 

structure programs in both academia and industry, ORCA continues to evolve with each 

release, balancing cutting-edge functionality with usability and computational efficiency. 

The release of ORCA 6.1 in 2025 marks another critical step forward for the community 

relying on quantum chemical methods. 

Prof. Frank Neese leads the ORCA project [18–25] at the Max-Planck-Institut für 

Kohlenforschung in Mülheim, Germany. Over the years, Prof. Neese has guided the 

development of ORCA into a full-featured, high-performance electronic structure platform 

that supports both foundational research and practical applications across a wide range of 

chemical disciplines. We dedicate space to ORCA not only because it is among the most 

powerful atomistic codes, if not the most powerful, but also because it remains completely 

free for academic use, a policy that greatly supports education and research worldwide. 

ORCA 6.1 introduces a range of improvements spanning performance, accuracy, and 

user experience. One of the most notable developments is enhanced GPU acceleration, which 

significantly reduces computation times for hybrid DFT and post-Hartree-Fock methods. 

This makes the package highly competitive in high-throughput applications and large-scale 

simulations, particularly relevant as system sizes and data demands continue to grow in 

fields like catalysis, materials science, and bioinorganic chemistry. 

The update also strengthens support for multi-node parallelism, enabling more 

efficient scaling across modern high-performance computing clusters. These improvements 

reflect a broader trend in computational chemistry software: adapting to evolving hardware 

architectures while preserving precision, flexibility, and methodological rigor. 
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On the theoretical side, ORCA 6.1 brings expanded support for modern dispersion 

corrections, new basis sets, and enhanced continuum solvation models, broadening its 

applicability to diverse molecular environments. The software also maintains strong support 

for multireference methods, excited-state calculations, EPR/IR/Raman spectroscopy, and 

relativistic effects, reinforcing its relevance for both fundamental and applied research. 

It is worth noting that ORCA also played a central role in the creation of the OMol25 

dataset: the FAIR team used ORCA 6.0.1 to perform the 6 billion core-hours of DFT 

calculations required to generate the dataset. This underscores ORCA’s robustness, 

scalability, and reliability even under the most demanding computational conditions. 

Finally, the ORCA development team places strong emphasis on user accessibility and 

educational support. Extensive and well-organized documentation is available, including a 

detailed user manual and a growing collection of tutorials that help guide users through 

common tasks, advanced methods, and best practices. This commitment to supporting the 

community, especially students and early-career researchers, further solidifies ORCA’s role 

as a central tool in the field of computational molecular modeling. 

 

4. g-xTB: a new generation of semiempirical methods 

Semiempirical quantum mechanical (SQM) methods continue to play a crucial role in 

atomistic modeling, offering a balance between computational efficiency and chemical 

accuracy. These methods are especially valuable for tasks requiring extensive sampling, 

rapid geometry optimizations, or simulations of large molecular systems. Just recently, the 

group of Prof. Stefan Grimme introduced g-xTB, a next-generation SQM method that marks 

a significant advancement over its widely used predecessor, GFN2-xTB. 

g-xTB is derived from extended tight-binding (TB) approximations to Kohn-Sham 

DFT and is designed to close the gap between traditional SQM methods and full DFT 

calculations in terms of accuracy, robustness, and transferability. The method is minimally 

empirical and has been parameterized on a highly diverse training set that includes not only 

standard molecular systems, but also challenging species such as transition metal complexes, 

actinides, and so-called “mindless molecules”. 

Several key innovations distinguish g-xTB from earlier xTB models: an atom-in-

molecule adaptive atomic orbital basis, Hamiltonian that incorporates range-separated 

approximate Fock exchange, higher-order charge-fluctuation terms, atomic correction 

potentials, and a charge-dependent semi-classical repulsion function. 

These methodological enhancements result in a model that consistently outperforms 

GFN2-xTB, often reducing mean absolute errors by half. In benchmarking across ~32000 
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relative energies, including datasets for thermochemistry, conformational energetics, non-

covalent interactions, and reaction barriers, g-xTB achieved a weighted total mean absolute 

deviation (WTMAD-2) of 9.3 kcal/mol on the general main-group thermochemistry, kinetics, 

and non-covalent interactions (GMTKN55) database [46] benchmark, placing it on par with 

low-cost DFT methods. The model also shows substantial gains in domains where SQM and 

even DFT often struggle, such as transition metal systems, relative spin-state energies, and 

orbital energy gaps. 

Despite these accuracy improvements, g-xTB maintains a computational profile that 

is only moderately more expensive than GFN2-xTB, typically incurring a 30-50% overhead 

[30]. This modest cost increase is more than justified by the gains in performance, making g-

xTB the strongest candidate for large-scale screening, pre-optimization, and property 

prediction workflows. 

Importantly, g-xTB is open source and designed to be a general-purpose replacement 

for the GFNn-xTB family. In many practical cases, it also serves as a viable alternative to low- 

and mid-level DFT methods, particularly when computational resources are limited or large 

systems are involved. 

In summary, g-xTB represents a robust, transferable, and efficient SQM method that 

offers DFT-like performance at TB speeds. Its release marks an important evolution in 

semiempirical modeling and complements the broader landscape of atomistic simulation 

methods, including both traditional ab initio and machine learning-based approaches. 

 

5. WATOC 2025 

While methods, models, and software define the technical landscape of atomistic 

modeling, the role of scientific meetings in shaping the field’s direction cannot be overstated. 

Conferences offer a platform for presenting new results, exchanging ideas, and building 

collaborations that often seed the next generation of scientific progress. In this regard, the 

WATOC conference series holds a unique and prestigious position. 

The 13th Triennial WATOC Congress, held in Oslo, Norway, from June 22-27, 2025, 

brought together hundreds of participants from around the world. Hosted at the Oslo 

Congress Centre and organized by the Hylleraas Centre for Quantum Molecular Sciences at 

the University of Oslo, WATOC 2025 featured 12 plenary lectures, 150 invited talks, and 

three poster sessions, spanning 75 thematic areas that reflect the various aspects of the field, 

from electronic structure theory and MD to catalysis, spectroscopy, materials modeling, 

machine learning, and quantum computing. 
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A notable addition to this year’s program was Young WATOC, held on June 21, which 

provided a stage for early-career researchers who defended their PhDs in 2020 or later. This 

satellite event showcased the work of a new generation of theorists and simulators, fostering 

dialogue between junior and senior scientists in an inclusive and forward-looking 

environment. 

WATOC 2025 arrived at a moment of exceptional activity in the field. Several of the 

central developments discussed in this review, OMol25, UMA, g-xTB, and ORCA 6.1, were 

prominently featured in presentations, informal discussions, and poster sessions. These 

contributions not only highlighted the technological momentum in atomistic modeling but 

also sparked community-wide conversations on the future role of machine learning, 

software sustainability, and open science. 

In summary, WATOC 2025 reaffirmed its place as a cornerstone of the theoretical and 

computational chemistry community. Its timing, coinciding with a period of rapid and far-

reaching advances in atomistic modeling, made the congress especially impactful, serving 

both as a showcase of progress and a catalyst for future directions in the field. 

 

6. Atomistica.online 2025: a platform for accessible molecular 

modeling 

In parallel with several large-scale initiatives from major research institutions and 

industrial laboratories, smaller academic efforts continue to play a meaningful role in the 

availability of tools for atomistic modeling. As part of this broader movement, we released a 

significantly upgraded version of our platform, Atomistica.online 2025 

(https://atomistica.online) [32,33], during this particularly active period in the field. While 

modest in scope compared to flagship machine learning models or production-grade 

electronic structure packages, Atomistica.online aims to provide an accessible and practical 

environment for conducting a broad range of atomistic modeling tasks, with particular 

emphasis on education, rapid prototyping, and early-stage research. 

The platform has been completely redesigned with a new interface based on modern 

material design principles, offering a cleaner layout, faster loading times, and improved 

responsiveness across devices. Molecular visualization is now fully integrated into the 

browser using 3Dmol.js, allowing users to interactively view and manipulate molecular 

structures without installing additional software. These features support immediate visual 

feedback in applications such as geometry optimization, molecular descriptor validation, 

and structure generation, especially useful in teaching environments and quick-turnaround 

modeling scenarios. 

https://atomistica.online/
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Functionally, Atomistica.online 2025 offers access to a growing set of tools related to 

atomistic calculations. Notably, support has been added for the newly released g-xTB 

method [30] developed by Prof. Stefan Grimme and collaborators. Calculations using the GFN 

family of methods [10–14] and g-xTB can be executed directly through the browser interface, 

streamlining the process for users who may not have access to local infrastructure. 

In step with emerging trends, Atomistica.online also integrates machine-learned 

potentials, including OMol25 and UMA, two high-impact models recently released by the 

Meta FAIR team. These models, initially designed for large-scale molecular energy prediction 

and catalyst–adsorbate optimization, can now be accessed via a simplified online interface. 

Tools based on the OC20 framework are also included, enabling the generation of relaxed 

surface-adsorbate systems without requiring users to handle complex installations or 

command-line workflows. 

A significant area of focus in this release has been the modeling and design of ionic 

liquids (ILs). We developed and deployed a series of machine learning models, collectively 

referred to as IonIL-IM, for the prediction of density and viscosity of imidazolium-based ILs. 

These models are trained on curated datasets, constructed using global minimum 

geometries optimized via the GOAT protocol at the GFN-FF level. Two models are available 

for density prediction: IonIL-IM-D1, which uses only three simple descriptors for fast 

screening, and IonIL-IM-D2, which includes seven features for improved accuracy. For 

viscosity, the IonIL-IM-V model employs nine descriptors, including DFT-derived features 

such as ESP metrics and local ionization energy. Each model is available as an interactive tool 

requiring no programming skills: users input descriptors and instantly receive predictions, 

all within the browser. 

To complement these models, an ILs Generator enables users to combine over 1300 

cations and 450 anions to generate pre-optimized ion pairs suitable for further modeling or 

machine learning analysis. Structures are downloadable for seamless integration into 

quantum mechanical or MD workflows. Together, the models and generator support 

streamlined design and exploration of ILs for applications in green chemistry, energy 

storage, and solvent development. 

The platform also includes several auxiliary tools aimed at accelerating typical 

computational workflows. These include a batch input file generator for ORCA, a surface 

property analyzer based on Multiwfn [47–50]. 

Importantly, in 2025, Atomistica.online introduced a live usage analytics dashboard, 

providing visibility into how the platform is used over time. Users and contributors can now 

explore real-time statistics on app visits, descriptor usage, and tool engagement by accessing 

the “Detailed usage stats” section. This feature not only enhances platform transparency but 

also offers a foundation for evaluating outreach impact and exploring potential academic 

collaborations or sponsorship opportunities based on real-world engagement. 
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Atomistica.online 2025 continues to be offered entirely free for academic and 

educational purposes, in line with our goal of supporting open science and inclusive access 

to computational tools. While it does not seek to compete with the scale of major institutional 

projects, it aims to complement them by enabling rapid, browser-based modeling for those 

who need accessible, interactive tools in real time. We hope that this platform, with its 

combination of quantum methods, machine learning models, curated datasets, and real-time 

usage insight, contributes a small but valuable part to the broader ecosystem of modern 

molecular simulation. 

 

7. Conclusions  

In the six-week period between May 13 and June 27, 2025, the scientific community 

engaged in atomistic modeling witnessed a remarkable wave of advancements. Meta FAIR’s 

open release of OMol25 and UMA set new standards in dataset scale and model generality. 

At the same time, the methodological improvements embedded in ORCA 6.1 and the next-

generation g-xTB semiempirical method provided even more resources for computational 

scientists. WATOC 2025 also played a valuable role by offering a timely venue for researchers 

to share insights, present new tools, and discuss ongoing developments in the field during 

this active period.  

Taken together, the developments highlighted in this review reflect not only rapid 

progress in specific tools and methods but also a broader shift in how atomistic modeling is 

practiced and shared. They suggest a future in which machine learning, methodological 

robustness, open datasets, and accessible software work in tandem to support both 

established and emerging researchers in molecular science. 

Amid these developments, we launched a new version of Atomistica.online, an 

academic, browser-based platform designed to broaden access to modern modeling tools. 

Though limited in scale, it brings together semiempirical methods, machine learning models 

for ILs, input and structure generators, and live usage analytics, illustrating how focused, 

accessible tools can support progress in the application of atomistic calculations. 
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